### Jérôme & Parameterized Algorithms and Complexity

Henning Fernau

Universität Trier, Germany





JM 2021 : Scientific Tribute to Jérôme Monnot Paris, 06. December 2021

## Overview

- How I met Jérôme
- The UPPER DOMINATION project
- What are extension problems?
  - A framework for extension problems
- What about ... (parameterized) complexity?
- ROMAN DOMINATION
- CONFERENCE PROGRAM DESIGN

### **Meeting Jérôme**

- Some personal tradition to come to Dauphine
- Involvement in several dissertation projects:
  - 2010: Nicolas Bourgeois,
  - 2013: Morgan Chopin,
  - 2014: Édouard Bonnet.
- Often commuting between floors ...
- ... somehow culminating in the 10-author project The many facets of upper domination.

## The UPPER DOMINATION Project

Given: a graph G = (V, E)

Task: Find an (inclusion-wise) minimal dominating set *D* of maximum size!

Our paper combined many results concerning approximation / parameterization of both groups. Examples of FPT- or W-results:

- With parameter pathwidth  $p: \mathcal{O}^*(7^p)$ . Open:  $\mathcal{O}^*(c^p)$  for c < 7?
- With parameter treewidth  $t: \mathcal{O}^*(10^t)$ . Open:  $\mathcal{O}^*(c^t)$  for t < 10?
- With lower-bound parameter k on D: W[1]-hard, in W[2].
  Open: Membership in W[1] or W[2]-hardness? Or anything in-between?
- With dual parameter k<sub>d</sub> = |V| − k: Quadratic vertex & edge kernel, branching algorithm in O\*(4.3077<sup>k<sub>d</sub></sup>). Open: Improvements or lower bounds?

#### More on the UPPER DOMINATION Project

Given: a graph G = (V, E)

Task: Find an (inclusion-wise) minimal dominating set *D* of maximum size!

Open until today: Find exact algorithm for UPPER DOMINATION that is better than the one enumerating all minimal dominating sets!\*

Our hope: Find methods how to cut search tree branches at an early stage.

We therefore introduced the following *extension problem*: Given: a graph G = (V, E) and  $U \subseteq V$ Question: Is there a minimal dominating set containing U?

An efficient solution might help find a clever algorithm for UPPER DOMINATION. Alas: The question is NP-hard in quite restricted scenarios. Also: W[3]-complete when parameterized by |U|.

\* $\mathcal{O}^*(1.7159^n)$  by Fomin, Grandoni, Pyatkin, Stepanov, ACM TALG 2008

### **Extension Framework** (inspired by the def. of *NPO*); Example DS

A monotone problem is described as  $\Pi = (\mathcal{I}, presol, sol, \leq, m)$  with

- $\mathcal{I}$  is the set of *instances*, recognizable in poly-time. all graphs G = (V, E)
- For any  $I \in \mathcal{I}$ , presol(I) is the set of pre-solutions.  $2^{\vee}$ Moreover, for any  $y \in presol(I)$ , |y| is polynomially bounded in |I|.
- For  $I \in \mathcal{I}$ ,  $sol(I) \subseteq presol(I)$  is the set of solutions. dominating sets D
- ' $U \in presol(I)$ ?' and ' $U \in sol(I)$ ?' are decidable in poly-time on (I, U).
- For  $I \in \mathcal{I}, \preceq$  is a poly-time decidable partial ordering on *presol(I)*. inclusion  $\subseteq$
- For  $I \in \mathcal{I}$ , sol(I) is upward closed with respect to  $\preceq$ .
- For I ∈ I & U ∈ presol(I), m(I, U) ∈ Q≥0 is the poly-time computable value of U.
  cardinality |D|
- For  $I \in \mathcal{I}$ ,  $m(I, \cdot)$  is *monotone* with respect to  $\preceq$ , i.e., for all  $U, U' \in presol(I)$  with  $U' \preceq U$ ,
  - either  $m(I, U') \le m(I, U)$ , so that  $m(I, \cdot)$  is *increasing*,  $\checkmark$
  - or  $m(I, U') \ge m(I, U)$ , so that  $m(I, \cdot)$  is *decreasing*.

### **Extension Problems**

Let  $\Pi = (\mathcal{I}, presol, sol, \preceq, m)$  be a monotone problem.  $\mu(sol(I))$  denotes the set of *minimal feasible solutions of I*, i.e.,

 $\mu(sol(I)) = \{S \in sol(I) : ((S' \preceq S) \land (S' \in sol(I))) \rightarrow S' = S\}.$ 

On  $U \in presol(I)$ , define  $ext(I, U) = \{U' \in \mu(sol(I)) : U \leq U'\}$ : the set of *extensions* of U. Sometimes,  $ext(I, U) = \emptyset \rightarrow$  the next question is interesting.

EXT  $\Pi$ Input:  $I \in \mathcal{I}$  and some  $U \in presol(I)$ . Question:  $ext(I, U) \neq \emptyset$ ? Are there supersets of a given vertex set *U* that are inclusion-wise minimal dominating sets?

<u>Motivation</u>: Having arrived at pre-solution U with  $ext(I, U) = \emptyset$ : Stop branching!

#### A General Upper Bound on Complexity

If  $\Pi$  is a monotone problem, then EXT  $\Pi$  can always be solved within  $\Sigma_2^p$ .

# <u>Recall</u>: $NP \cup co - NP \subseteq \Sigma_2^p$ .

Given an instance (I, U) of  $E \times T \Pi$ , we can perform the following steps.

- 1. Guess a solution U' of I.  $\exists U' \in sol(I)$
- 2. Verify that  $U \preceq U'$  holds, i.e., that U' is an extension of U.
- 3. Set the Boolean variable *b* to false.
- 4. For all solutions U'' of I do:  $\forall U'' \in sol(I)$ 
  - Let  $b := (U'' \preceq U') \land (U'' \neq U')$ .
  - If b, then U' is not a minimal extension; exit the for-loop.
  - If not *b*, continue with the for-loop.
- 5. If (and only if) not b, then U' is a minimal extension.

Notice: Polynomial bound on solution size needed, but not upward closedness.

### Parameterized Complexity

Define the standard parameter for  $E \times T \Pi$  to be m(I, U) on instance (I, U). The dual parameter is  $\kappa_d(I, U) = m_{max}(I) - m(I, U)$  with  $m_{max}(I) = \max\{m_I(y) : y \in presol(I)\}$ . If  $m_{max}(I)$  is defined for all  $I \in \mathcal{I}$ , then  $\Pi$  admits a dual parameterization. Define  $Above(U) = \{V \in sol(I) : U \leq V\}$ .

Let  $\Pi = (\mathcal{I}, presol, sol, \leq, m)$  be monotone(, admitting a dual parameterization). If, for all  $I \in \mathcal{I}$  and  $U \in presol(I)$ , Above(U) can be enumerated in *FPT*-time, parameterized by  $k \in \{m(I, U), \kappa_d(I, U)\}$ , then EXT  $\Pi$  is in *FPT*, parameterized by k.

In order to enumerate Above(U), it is often easiest to enumerate  $\{V \in presol(I) : U \leq V\}$  instead (in *FPT*-time) and check if the enumerated pre-solution is a solution, doable in poly-time.

| Ext. of Param. | EC  | EM  | EDS               | IS          | VC                  | DS                           | BP      |
|----------------|-----|-----|-------------------|-------------|---------------------|------------------------------|---------|
| standard       | FPT | FPT | <i>W</i> [1]-hard | FPT         | <i>W</i> [1]-compl. | <i>W</i> [ <i>3</i> ]-compl. | para-NP |
| dual           | FPT | FPT | FPT               | W[1]-compl. | FPT                 | FPT                          | FPT     |

Further Orderings but subset or superset ... Ask the Romans for help: Roman Domination\*. We only present the monotone problem  $\Pi_{R}$ .  $f: V \rightarrow \{0, 1, 2\}$  is called a *Roman domination function* iff, for all vertices x with f(x) = 0, there is some  $y \in N(x)$  with f(y) = 2.  $\mathcal{I} = \{G = (V, E) : G \text{ is a graph}\}$  $presol(G) = \{0, 1, 2\}^V$ , polyn. bounded  $\sqrt{}$ , poly-time decidable  $\sqrt{}$  $sol(G) = \{f \in presol(G) : f \text{ is a Roman domination function of } G\},\$ poly-time decidable 🗸  $\leq \leq$ , lifted 'point-wise', poly-time decidable  $\checkmark$ , sol(G) upward closed  $\checkmark$  $m(I,g) = g(V) = \sum_{x \in V} g(x)$ , poly-time computable  $\sqrt{}$  $\mu(sol(G)) = \{f \in sol(G) : ((f' \leq f) \land (f' \in sol(G))) \rightarrow f' = f\}$  $ext(G, f_U) = \{f \in \mu(sol(G)) : f_U \leq f\}$ 

Good news: Kevin Mann could prove: EXT ROMAN DOMINATION is poly-time solvable. Alas, this does not help improve exact algorithms for ROMAN DOMINATION (see PhD of Liedloff).

\*Stewart, Scientific American 1999

## **Open Parameterizations**

Sometimes, open problems can be found in Jérôme's papers. WINE 2016

CONFERENCE PROGRAM DESIGN, or CPD for short:

Given: *m* talks  $T = \{t_1, \ldots, t_m\}$  and *n* participants of a conference.

The conference should be run using k time slots.

Each slot contains at most q talks (held in parallel tracks).

Conference schedule: described by a partition  $S = \{S_1, \ldots, S_k\}$  with  $|S_i| \le q$ . Each participant is modeled by a utility function  $u_{\ell} : T \to \mathbb{R}_{\ge 0}$ . Goal: maximize the overall utility, which is  $\sum_{\ell=1}^{n} \sum_{i=1}^{k} \max\{u_{\ell}(t) \mid t \in S_i\}$ .

If all preference orders  $\prec_{\ell}$  induced by  $u_{\ell}$  are single-peaked wrt. some linear

order  $\supseteq$  on T, then Fotakis, Gourvès and Monnot showed an XP-algorithm wrt. parameter k for solving CPD.

Open question: Is there some FPT-algorithm for CPD? Or any lower bounds?

# Thanks for your attention!





#### See you soon at IWOCA