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A real challenge!
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Approval voting

N. Barrot, L. Gourves, J. Lang, J. Monnot, B. Ries, Possible winners
in approval voting Lecture Notes in Artifical Intelligence 8176 (2013)
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Our approach: Exploiting graph structures to cope with
hard problems

We consider a problem Π for which we know/can show that it is
NP-hard in general.

Then we consider a special graph class C and ask whether Π remains
difficult in C.

Or in other words, does the graph class C admit some "nice" property
P which makes problem Π solvable in polynomial time in C?

P may consist in some structural property that we can exploit in order
to come up with a polynomial-time algorithm for Π in C.
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Dominating Set

In a graph G = (V ,E), a dominating set is a subset of vertices D ⊆ V such
that any vertex outside of D has a neighbour in D. Such a set is said to be
minimal if no proper subset of D is dominating.

B. Ries (DS&OR) JM&GRAPHS JM2021 12 / 22



Dominating Set

In a graph G = (V ,E), a dominating set is a subset of vertices D ⊆ V such
that any vertex outside of D has a neighbour in D. Such a set is said to be
minimal if no proper subset of D is dominating.

B. Ries (DS&OR) JM&GRAPHS JM2021 12 / 22



Upper Dominating Set

In a graph G = (V ,E), an upper dominating set is a minimal dominating
set of maximum cardinality.
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Complexity

The UPPER DOMINATING SET PROBLEM (i.e., the problem of finding an
upper dominating set in a graph) is known to be NP-hard [Cheston et al. 1990].

On the other hand, in some particular graph classes, the problem can be
solved in polynomial time:

bipartite graphs [Cockayne et al. 1981],

chordal graphs [Jacobsen et al. 1990],

generalized series-parallel graphs [Hare et al. 1987],

graphs of bounded clique-width [Courcelle et al. 2000].
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Complexity

Further results have been obtained regarding parametrised complexity
and approximation:

UPPER DOMINATING SET PROBLEM is W [1]-hard [Bazgan et al. 2016],

for any ε > 0, UPPER DOMINATING SET PROBLEM is not
n1−ε-approximable, unless P = NP [Bazgan et al. 2016].

We were interested in the complexity of the UPPER DOMINATING SET

PROBLEM in monogenic classes of graphs, i.e. classes defined by a single
forbidden induced subgraph.

Let G and H be two graphs. Then G is said to be H-free, if it does not
contain H as an induced subgraph.

B. Ries (DS&OR) JM&GRAPHS JM2021 15 / 22



Complexity

Further results have been obtained regarding parametrised complexity
and approximation:

UPPER DOMINATING SET PROBLEM is W [1]-hard [Bazgan et al. 2016],

for any ε > 0, UPPER DOMINATING SET PROBLEM is not
n1−ε-approximable, unless P = NP [Bazgan et al. 2016].

We were interested in the complexity of the UPPER DOMINATING SET

PROBLEM in monogenic classes of graphs, i.e. classes defined by a single
forbidden induced subgraph.

Let G and H be two graphs. Then G is said to be H-free, if it does not
contain H as an induced subgraph.

B. Ries (DS&OR) JM&GRAPHS JM2021 15 / 22



Main result

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

Let H be a graph. If H is a 2K2 or P4 (or any induced subgraph of 2K2 or
P4), then the UPPER DOMINATING SET PROBLEM can be solved for H-free
graphs in polynomial time. Otherwise, the problem is NP-hard for H-free
graphs

In other words, we obtain a complete dichotomy in monogenic
classes for the UPPER DOMINATING SET PROBLEM.

Up to that date, a complete dichotomy in monogenic classes was
available only for VERTEX COLORING [Král et al 2001], MINIMUM

DOMINATING SET [Korobitsyn 1990] and MAXIMUM CUT [Kaminski 2012].
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Hardness results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is NP-hard when restricted to

a) planar graphs with maximum degree 6 and girth at least 6;

b) complement of bipartite graphs.

a) Reduction from MAXIMUM INDEPENDENT SET PROBLEM in planar
cubic graphs:

⇒

b) Reduction from MINIMUM DOMINATING SET PROBLEM.
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Positive results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is polynomial-time solvable when
restricted to

a) P4-free graphs;

b) 2K2-free graphs.

a) P4-free graphs have cliquewidth at most 2 [Brandstädt et al., 2006].

b) Use structure of minimal dominating sets in 2K2-free graphs.
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2K2-free graphs

● Every maximal independent set is a minimal dominating set (true in
general).

● The class of 2K2-free graphs admits a polynomial-time algorithm to
solve the MAXIMUM INDEPENDENT SET PROBLEM.

● Thus, we may restrict ourselves to the analysis of minimal dominating
sets D such that

▸ D contains at least one edge;
▸ ∣D∣ > α(G).
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2K2-free graphs

Crucial structural result:

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

If a minimal dominating set in a 2K2-free graph G is larger than α(G), then
it consists of a triangle and all the vertices not dominated by that triangle.

This gives us the following algorithm:

1. Find a maximum independent set D in G.

2. For each triangle T in G
▸ Let D′ = T ∪ A(T).
▸ If D′ is a minimal dominating set and ∣D′∣ > ∣D∣, then D ∶= D′.

3. Return D.
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Jérôme Monnot

A humble and generous person!

An excellent teacher and
mentor/guide for young
researchers!

Very fruitful and rich
collaboration!

Interested in very different
problems and areas!

Significant contributions in many
areas!
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Thank you for your attention!
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