Jérôme Monnot & Graph Theory

Bernard Ries

Decision Support & Operations Research Department of Informatics University of Fribourg, Switzerland

JM2021: Scientific tribute to Jérôme Monnot

B. Ries (DS&OR)

JM&GRAPHS

ヨトイヨト

		DO	0.0	
в. н	ies i	DS	a c	ин,

JM&GRAPHS

JM2021 2/22

A real challenge!

14H30 - 17H40 : SCIENTIFIC TALKS (A709)

- 14h30-14h55 : Jérôme & Polynomial approximation and complexity Bruno Escoffier
- 14h55-15h20: Jérôme & Computational social choice Jérôme Lang
- 15h20-15h45: Jérôme & Algorithmic game theory Dimitris Fotakis
- Cofee Break (A703)

199-16h25 : Jérôme & Parameterized algorithms and complexity - Henning Fernau (online) Vérôme & Multi-Objective optimization - Fanny Pascual 16h50-15h15 érôme & Graph theory - Bernard Ries Jérôme & Operational research and Combinatorial optimization - Dominique de Werra

イロト イポト イヨト イヨト

Fruitful collaboration

- H. AbouEisha, S. Hussain, V. Lozin, J. Monnot, B. Ries, V. Zamaraev, Upper Domination: towards a dichotomy through boundary properties, *Algorithmica 80 (2018) 2799-2817*
- H. AbouEisha, S. Hussain, V. Lozin, J. Monnot, B. Ries, V. Zamaraev, A boundary property for upper domination, *Lecture Notes in Computer Science 9843 (2016) 229-240, International Workshop on Combinatorial Algorithms (IWOCA 2016)*
- V. Lozin, J. Monnot, B. Ries, On the maximum independent set problem in subclasses of subcubic graphs, *Journal of Discrete Algorithms 31 (2015) 104-112*
- M. Demange, J. Monnot, P. Pop, B. Ries, On the complexity of the selective graph coloring problem in some special classes of graphs, *Theoretical Computer Science 541 (2014) 89-102*

イロト 不得 トイヨト イヨト 三日

Fruitful collaboration II

- H. AbouEisha, S. Hussain, V. Lozin, J. Monnot, B. Ries, A dichotomy for upper domination in monogenic classes, Lecture Notes in Computer Science 8881 (2014) 258-267, 10th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2014)
- N. Barrot, L. Gourves, J. Lang, J. Monnot, B. Ries, Possible winners in approval voting Lecture Notes in Artifical Intelligence 8176 (2013) 57-70, Algorithmic Decision Theory (ADT 2013)
- V. Lozin, J. Monnot, B. Ries, On the maximum independent set problem in subclasses of subcubic graphs, Lecture Notes in Computer Science 8288 (2013) 314-326, International Workshop on Combinatorial Algorithms (IWOCA 2013)
- M. Demange, J. Monnot, P. Pop, B. Ries, Selective Graph Coloring on Some Special Classes of Graphs, Lecture Notes in Computer Science 7422 (2012) 320-331, International Symposium on Combinatorial Optimization (ISCO 2012)

B. Ries (DS&OR)

JM&GRAPHS

Selective graph coloring

- M. Demange, J. Monnot, P. Pop, B. Ries, On the complexity of the selective graph coloring problem in some special classes of graphs, *Theoretical Computer Science* 541 (2014) 89-102
- M. Demange, J. Monnot, P. Pop, B. Ries, Selective Graph Coloring on Some Special Classes of Graphs, Lecture Notes in Computer Science 7422 (2012) 320-331, International Symposium on Combinatorial Optimization (ISCO 2012)

Upper dominating set problem

- H. AbouEisha, S. Hussain, V. Lozin, J. Monnot, B. Ries, V. Zamaraev, Upper Domination: towards a dichotomy through boundary properties, *Algorithmica 80 (2018) 2799-2817*
- H. AbouEisha, S. Hussain, V. Lozin, J. Monnot, B. Ries, V. Zamaraev, A boundary property for upper domination, *Lecture Notes in Computer Science 9843 (2016) 229-240, International Workshop on Combinatorial Algorithms (IWOCA 2016)*
- H. AbouEisha, S. Hussain, V. Lozin, J. Monnot, B. Ries, A dichotomy for upper domination in monogenic classes, Lecture Notes in Computer Science 8881 (2014) 258-267, 10th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2014)

Maximum independent set problem

- V. Lozin, J. Monnot, B. Ries, On the maximum independent set problem in subclasses of subcubic graphs, *Journal of Discrete Algorithms 31 (2015) 104-112*
- V. Lozin, J. Monnot, B. Ries, On the maximum independent set problem in subclasses of subcubic graphs, Lecture Notes in Computer Science 8288 (2013) 314-326, International Workshop on Combinatorial Algorithms (IWOCA 2013)

Approval voting

 N. Barrot, L. Gourves, J. Lang, J. Monnot, B. Ries, Possible winners in approval voting Lecture Notes in Artifical Intelligence 8176 (2013) 57-70, Algorithmic Decision Theory (ADT 2013)

 We consider a problem Π for which we know/can show that it is NP-hard in general.

- We consider a problem Π for which we know/can show that it is NP-hard in general.
- Then we consider a special graph class C and ask whether Π remains difficult in C.

- We consider a problem Π for which we know/can show that it is NP-hard in general.
- Then we consider a special graph class C and ask whether Π remains difficult in C.
- Or in other words, does the graph class C admit some "nice" property *P* which makes problem Π solvable in polynomial time in C?

- We consider a problem Π for which we know/can show that it is NP-hard in general.
- Then we consider a special graph class C and ask whether Π remains difficult in C.
- Or in other words, does the graph class C admit some "nice" property *P* which makes problem Π solvable in polynomial time in C?
- P may consist in some structural property that we can exploit in order to come up with a polynomial-time algorithm for Π in C.

B. Ries (DS&OR)

JM&GRAPHS

JM2021 11/22

Dominating Set

In a graph G = (V, E), a *dominating set* is a subset of vertices $D \subseteq V$ such that any vertex outside of *D* has a neighbour in *D*. Such a set is said to be *minimal* if no proper subset of *D* is dominating.

Dominating Set

In a graph G = (V, E), a *dominating set* is a subset of vertices $D \subseteq V$ such that any vertex outside of *D* has a neighbour in *D*. Such a set is said to be *minimal* if no proper subset of *D* is dominating.

Upper Dominating Set

In a graph G = (V, E), an *upper dominating set* is a minimal dominating set of maximum cardinality.

Upper Dominating Set

In a graph G = (V, E), an *upper dominating set* is a minimal dominating set of maximum cardinality.

The UPPER DOMINATING SET PROBLEM (i.e., the problem of finding an upper dominating set in a graph) is known to be NP-hard [Cheston et al. 1990].

The UPPER DOMINATING SET PROBLEM (i.e., the problem of finding an upper dominating set in a graph) is known to be NP-hard [Cheston et al. 1990].

On the other hand, in some particular graph classes, the problem can be solved in polynomial time:

- bipartite graphs [Cockayne et al. 1981],
- chordal graphs [Jacobsen et al. 1990],
- generalized series-parallel graphs [Hare et al. 1987],
- graphs of bounded clique-width [Courcelle et al. 2000].

Further results have been obtained regarding parametrised complexity and approximation:

- UPPER DOMINATING SET PROBLEM is W[1]-hard [Bazgan et al. 2016],
- for any $\epsilon > 0$, UPPER DOMINATING SET PROBLEM is not $n^{1-\epsilon}$ -approximable, unless P = NP [Bazgan et al. 2016].

Further results have been obtained regarding parametrised complexity and approximation:

- UPPER DOMINATING SET PROBLEM is W[1]-hard [Bazgan et al. 2016],
- for any $\epsilon > 0$, UPPER DOMINATING SET PROBLEM is not $n^{1-\epsilon}$ -approximable, unless P = NP [Bazgan et al. 2016].

We were interested in the complexity of the UPPER DOMINATING SET PROBLEM in monogenic classes of graphs, i.e. classes defined by a single forbidden induced subgraph.

Let G and H be two graphs. Then G is said to be H-free, if it does not contain H as an induced subgraph.

Main result

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

Let *H* be a graph. If *H* is a $2K_2$ or P_4 (or any induced subgraph of $2K_2$ or P_4), then the UPPER DOMINATING SET PROBLEM can be solved for *H*-free graphs in polynomial time. Otherwise, the problem is NP-hard for *H*-free graphs

Main result

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

Let *H* be a graph. If *H* is a $2K_2$ or P_4 (or any induced subgraph of $2K_2$ or P_4), then the UPPER DOMINATING SET PROBLEM can be solved for *H*-free graphs in polynomial time. Otherwise, the problem is NP-hard for *H*-free graphs

• In other words, we obtain a complete dichotomy in monogenic classes for the UPPER DOMINATING SET PROBLEM.

Main result

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

Let *H* be a graph. If *H* is a $2K_2$ or P_4 (or any induced subgraph of $2K_2$ or P_4), then the UPPER DOMINATING SET PROBLEM can be solved for *H*-free graphs in polynomial time. Otherwise, the problem is NP-hard for *H*-free graphs

- In other words, we obtain a complete dichotomy in monogenic classes for the UPPER DOMINATING SET PROBLEM.
- Up to that date, a complete dichotomy in monogenic classes was available only for VERTEX COLORING [Král et al 2001], MINIMUM DOMINATING SET [Korobitsyn 1990] and MAXIMUM CUT [Kaminski 2012].

Hardness results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is NP-hard when restricted to

- a) planar graphs with maximum degree 6 and girth at least 6;
- b) complement of bipartite graphs.

Hardness results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is NP-hard when restricted to

- a) planar graphs with maximum degree 6 and girth at least 6;
- b) complement of bipartite graphs.
- a) Reduction from MAXIMUM INDEPENDENT SET PROBLEM in planar cubic graphs:

b) Reduction from MINIMUM DOMINATING SET PROBLEM.

P Dies	
D. RIES	

Positive results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is polynomial-time solvable when restricted to

- a) P₄-free graphs;
- b) 2K₂-free graphs.

Positive results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is polynomial-time solvable when restricted to

- a) P₄-free graphs;
- b) 2K₂-free graphs.

a) P₄-free graphs have cliquewidth at most 2 [Brandstädt et al., 2006].

Positive results

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

The UPPER DOMINATING SET PROBLEM is polynomial-time solvable when restricted to

- a) P₄-free graphs;
- b) 2K₂-free graphs.

- a) P₄-free graphs have cliquewidth at most 2 [Brandstädt et al., 2006].
- b) Use structure of minimal dominating sets in $2K_2$ -free graphs.

• Every maximal independent set is a minimal dominating set (true in general).

▶ ∢ ≣

- Every maximal independent set is a minimal dominating set (true in general).
- The class of 2K₂-free graphs admits a polynomial-time algorithm to solve the MAXIMUM INDEPENDENT SET PROBLEM.

- Every maximal independent set is a minimal dominating set (true in general).
- The class of 2K₂-free graphs admits a polynomial-time algorithm to solve the MAXIMUM INDEPENDENT SET PROBLEM.
- Thus, we may restrict ourselves to the analysis of minimal dominating sets *D* such that
 - D contains at least one edge;
 - $|D| > \alpha(G)$.

Crucial structural result:

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

If a minimal dominating set in a $2K_2$ -free graph *G* is larger than $\alpha(G)$, then it consists of a triangle and all the vertices not dominated by that triangle.

Crucial structural result:

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

If a minimal dominating set in a $2K_2$ -free graph *G* is larger than $\alpha(G)$, then it consists of a triangle and all the vertices not dominated by that triangle.

This gives us the following algorithm:

1. Find a maximum independent set D in G.

Crucial structural result:

Theorem [AbouEisha, Hussain, Lozin, Monnot, R., 2014]

If a minimal dominating set in a $2K_2$ -free graph *G* is larger than $\alpha(G)$, then it consists of a triangle and all the vertices not dominated by that triangle.

This gives us the following algorithm:

- 1. Find a maximum independent set D in G.
- 2. For each triangle T in G
 - Let $D' = T \cup A(T)$.
 - If D' is a minimal dominating set and |D'| > |D|, then D := D'.
- 3. Return D.

Jérôme Monnot

- A humble and generous person!
- An excellent teacher and mentor/guide for young researchers!
- Very fruitful and rich collaboration!
- Interested in very different problems and areas!
- Significant contributions in many areas!

Thank you for your attention!

B. Ries (DS&OR)

JM2021 22/22