Jérôme, Algorithmic Game Theory and Strategyproof Facility Location

Dimitris Fotakis

School of Electrical and Computer Engineering
National Technical University of Athens, Greece

Based on joint work with Laurent Gourvès (LAMSADE), Jérôme Monnot (LAMSADE) and Panagiotis Patsilinakos (NTUA)

Homage to Jérôme Monnot, Univ. Paris-Dauphine, December 2021
Spanning Trees Constructed by Selfish Agents
[Gourvés M., WINE 08]

- Agents pay for **first edge** of path to root.
- Pure Nash equilibrium iff **strong** PNE.
- $\text{PoA} = \min\{\Theta(\log n), \text{depth of MST} \}$
Spanning Trees Constructed by Selfish Agents
[Gourvés M., WINE 08]
- Agents pay for first edge of path to root.
- Pure Nash equilibrium iff strong PNE.
- PoA = min{Θ(log n), depth of MST}

Strong Equilibria of (k-)Cut Games [Gourvés, M., WINE 09, TAMC 10]
- Cut games admit strong PNE and SPoA = 2/3.
- k-Cut games admit 3-strong PNE.
- If k-Cut games admit strong PNE (conjectured), SPoA = \(\frac{2k-2}{2k-1} \).

Congestion Games with Capacited Resources
[Gourvés, M., Morreti, Thang, SAGT 12, ToCS 2015]
PNE exists, m = 2 resources, NP-hard to tell for m ≥ 3.
PNE for singleton games, by elegant 2-dimensional potential!
Spanning Trees Constructed by Selfish Agents

[Gourvés M., WINE 08]

- Agents pay for **first edge** of path to root.
- Pure Nash equilibrium iff **strong** PNE.
- \(\text{PoA} = \min\{\Theta(\log n), \text{depth of MST}\} \)

Strong Equilibria of \((k\text{-})\text{Cut Games}\)

[Gourvés, M., WINE 09, TAMC 10]

- Cut games admit **strong** PNE and \(\text{SPoA} = \frac{2}{3} \).
- \(k \)-Cut games admit 3-strong PNE.
- If \(k \)-Cut games admit strong PNE (conjectured), \(\text{SPoA} = \frac{2k-2}{2k-1} \).

Congestion Games with Capacited Resources

[Gourvés, M., Morreti, Thang, SAGT 12, ToCS 2015]

- PNE exists, \(m = 2 \) resources, NP-hard to tell for \(m \geq 3 \).
- PNE for **singleton games**, by elegant 2-dimensional potential!
Selfish Transportation [F. Gourvès M., SOFSEM 17]

- **Bus route** selection, based on flow time from entering bus until destination.
- PNE exist (and computed **efficiently**), if buses have “identical routes”, or $m = 2$ and **metric** distances, or distances $\in \{1, 2\}$.
- PoA $\leq n$ for metric distances.
Selfish Transportation [F. Gourvés M., SOFSEM 17]

- **Bus route** selection, based on flow time from entering bus until destination.
- PNE exist (and computed efficiently), if buses have “identical routes”, or \(m = 2 \) and **metric** distances, or distances \(\in \{1, 2\} \).
- PoA \(\leq n \) for metric distances.

And Much More ...

- **Coordination mechanisms** for scheduling selfish tasks with setup times [Gourvés, M., Telelis, WINE 09]
- Selfish graph **coloring** [Escoffier, Gourvés, M., CIAC 10]
- Local taxes for **Set Cover** games [Escoffier Gourvés M. SIROCCO 10]
Selfish Transportation [F. Gourvès M., SOFSEM 17]

- **Bus route** selection, based on flow time from entering bus until destination.
- PNE exist (and computed **efficiently**), if buses have “identical routes”, or \(m = 2 \) and **metric** distances, or distances \(\in \{1, 2\} \).
- \(\text{PoA} \leq n \) for metric distances.

And Much More ...

- **Coordination mechanisms** for scheduling selfish tasks with setup times [Gourvès, M., Telelis, WINE 09]
- Selfish graph **coloring** [Escoffier, Gourvès, M., CIAC 10]
- Local taxes for **Set Cover** games [Escoffier Gourvès M. SIROCCO 10]
- **Project** games: how competitive agents select tasks and when decide to cooperate [Biló, Gourvès, M., CIAC 19]
Selfish Transportation [F. Gourvés M., SOFSEM 17]

- **Bus route** selection, based on flow time from entering bus until destination.
- PNE exist (and computed **efficiently**), if buses have “identical routes”, or $m = 2$ and **metric** distances, or distances $\in \{1, 2\}$.
- **PoA** $\leq n$ for metric distances.

And Much More ...

- **Coordination mechanisms** for scheduling selfish tasks with setup times [Gourvés, M., Telelis, WINE 09]
- Selfish graph **coloring** [Escoffier, Gourvés, M., CIAC 10]
- Local taxes for **Set Cover** games [Escoffier Gourvés M. SIROCCO 10]
- **Project** games: how competitive agents select tasks and when decide to cooperate [Biló, Gourvés, M., CIAC 19]
- Fair allocation of indivisible goods: approximation of the **maximin share** for $n = 3$ and matroids [Gourvés, M., CIAC 17]
Our Focus: k-Facility Location Games

Public Good Allocation for Strategic Agents on the Line

- Agents $N = \{1, \ldots, n\}$ on the real line.
- Agent i wants a facility close to x_i, which is private information.
Our Focus: \(k\)-Facility Location Games

Public Good Allocation for Strategic Agents on the Line

- Agents \(N = \{1, \ldots, n\}\) on the real line.
- Agent \(i\) wants a facility close to \(x_i\), which is private information.

(Randomized) Mechanism

Mechanism \(F\) maps reported ideal locations \(y = (y_1, \ldots, y_n)\) to (probability distribution over) set(s) of \(k\) facilities.
Our Focus: \textit{k}-Facility Location Games

Public Good Allocation for Strategic Agents on the Line

- Agents $N = \{1, \ldots, n\}$ on the real line.
- Agent i \textbf{wants} a facility close to x_i, which is \textbf{private information}.
- Each agent i \textbf{reports} y_i that may be \textbf{different} from x_i.

(Randomized) Mechanism

\textbf{Mechanism} F maps reported ideal locations $y = (y_1, \ldots, y_n)$ to (probability distribution over) set(s) of k \textbf{facilities}.
Connection Cost

(Expected) distance of agent i’s **true location** to the **nearest** facility:

$$
\text{cost}[x_i, F(y)] = \text{dist}(x_i, F(y)) = \min_{c \in F(y)} |x_i - c|
$$
Preferences and Truthfulness

Connection Cost

(Expected) distance of agent i’s true location to the nearest facility:

$$\text{cost}[x_i, F(y)] = \text{dist}(x_i, F(y)) = \min_{c \in F(y)} |x_i - c|$$

Truthfulness

For any location profile x, agent i, and location y:

$$\text{cost}[x_i, F(x)] \leq \text{cost}[x_i, F(y, x_{-i})]$$
Candidate Facility Locations:

- **Unrestricted**: Any point (esp. agent locations) can be facility.
- **Restricted**: Facilities selected from m candidate locations C.

Motivation from multi-winner elections: Chamberlin-Courant.
Variants and Social Efficiency

Candidate Facility Locations:

- **Unrestricted**: Any point (esp. agent locations) can be facility.
- **Restricted**: Facilities selected from m candidate locations C

Motivation from multi-winner elections: Chamberlin-Courant.

Social Objective

$F(x)$ should optimize (or approximate) a given **objective function**.

- **Social Cost**: minimize $\sum_{i=1}^{n} \text{cost}[x_i, F(x)]$
- **Social Welfare**: maximize $\sum_{i=1}^{n} (L - \text{cost}[x_i, F(x)])$
Median Mechanism

- Median of \((x_1, \ldots, x_n)\): truthful and optimal, when unrestricted.
Median Mechanism

- **Median** of \((x_1, \ldots, x_n)\): **truthful** and **optimal**, when unrestricted.
- Candidate location closest to \(\text{med}(x_1, \ldots, x_n)\): truthful and **1/3-approximate**, when restricted.
1-Facility Location on the Line

Median Mechanism

- **Median** of \((x_1, \ldots, x_n)\): **truthful** and **optimal**, when unrestricted.

- Candidate location closest to \(\text{med}(x_1, \ldots, x_n)\): truthful and **1/3-approximate**, when restricted.
 - OPT social cost \(\approx n/4\). OPT social welfare \(\approx 3n/4\).
 - Median social cost \(\approx 3n/4\). Median social welfare \(\approx n/4\).

Median social cost \(\approx 3n/4\). Median social welfare \(\approx n/4\).
Median Mechanism

- Median of \((x_1, \ldots, x_n)\): **truthful** and **optimal**, when unrestricted.
- Candidate location closest to \(\text{med}(x_1, \ldots, x_n)\): truthful and **1/3-approximate**, when restricted.
 - OPT social cost \(\approx n/4\). OPT social welfare \(\approx 3n/4\).
 - Median social cost \(\approx 3n/4\). Median social welfare \(\approx n/4\).
- Anonymity and truthfulness iff **generalized** median [Moulin 80]
Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is not truthful: optimal clustering sensitive to deviations!
Optimal is not truthful: optimal clustering sensitive to deviations!

\((\alpha_1, \ldots, \alpha_k)\)-percentile mechanism \((0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_k \leq 1)\):

- vote\((\ell)\) = \#agents preferring \(\ell \in C\) to other candidates in \(C\).
- \(j\)-th facility at leftmost \(\ell \in C\) with \(\geq \alpha_j\) fraction of vote on \(\ell\) and its left.
 - Median is 0.5-percentile. Two-Extremes is \((0, 1)\)-percentile.

\(n = 80\) \hspace{1cm} \(k = 4\) \hspace{1cm} \((0.1, 0.3, 0.5, 0.9)\)-percentile
Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is not truthful: optimal clustering sensitive to deviations!

\((\alpha_1, \ldots, \alpha_k)\)-percentile mechanism \((0 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_k \leq 1)\):
- vote\((\ell)\) = \#agents preferring \(\ell \in C\) to other candidates in \(C\).
- \(j\)-th facility at leftmost \(\ell \in C\) with \(\geq \alpha_j\) fraction of vote on \(\ell\) and its left.
 - Median is 0.5-percentile. Two-Extremes is \((0, 1)\)-percentile.
 - Percentile mechanisms are anonymous and truthful.

\[n = 80 \quad k = 4 \quad (0.1, 0.3, 0.5, 0.9)\)-percentile
Robust version of \((kq)\)-Facility Location where each agent receives utility from \(q\) different facilities.

- Single-peaked preferences: in any set of \(kq\) facilities, each agent receives utility from \(q\) consecutive facilities.
Robust version of \((kq)\)-Facility Location where each agent receives utility from \(q\) different facilities.

- Single-peaked preferences: in any set of \(kq\) facilities, each agent receives utility from \(q\) consecutive facilities.
- Generalization of single-peakedness and percentile mechanisms to tuples of \(q\) consecutive candidate locations.
- For any \(q \geq 1\), \((1/(2k), 3/(2k), \ldots, (2k − 1)/(2k))\)-percentile applied to \(q\)-tuples is truthful and \((2k − 3)/(2k − 1)\)-approximate.
Robust version of \((k, q)\)-Facility Location where each agent receives utility from \(q\) different facilities.

- Single-peaked preferences: in any set of \(kq\) facilities, each agent receives utility from \(q\) consecutive facilities.
- Generalization of single-peakedness and percentile mechanisms to \(q\) consecutive candidate locations.
- For any \(q \geq 1\), \(\frac{1}{(2k)}, \frac{3}{(2k)}, \ldots, \frac{2k - 1}{(2k)}\)-percentile applied to \(q\)-tuples is \textbf{truthful} and \(\frac{2k - 3}{(2k - 1)}\)-approximate.
- Optimal solution through generalization of LP-based approach in [Hajiaghayi et al., SODA 14]
Truthful Location of 2 Facilities

Two-Extremes is \((n - 2)\)-approximate and best possible. [Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]
Truthful Location of 2 Facilities

Two-Extremes is \((n - 2)\)-approximate and best possible.
[Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of \(k \geq 3\) Facilities

- **Deterministic** anonymous mechanisms have **unbounded** approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is \(n\)-approximate
 [F. Tzamos, EC 13]
Truthful Location of 2 Facilities

Two-Extremes is \((n - 2)\)-approximate and best possible.
[Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of \(k \geq 3\) Facilities

- **Deterministic** anonymous mechanisms have unbounded approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is \(n\)-approximate [F. Tzamos, EC 13]
- Bounded approximation requires facility in each optimal cluster. But optimal clustering is **sensitive** to agent deviations.
Truthful Location of 2 Facilities

Two-Extremes is \((n - 2)\)-approximate and best possible.
[Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of \(k \geq 3\) Facilities

- **Deterministic** anonymous mechanisms have **unbounded** approximation ratio [F. Tzamos, ICALP 13]
- Best known **randomized** mechanism is \(n\)-approximate [F. Tzamos, EC 13]
- Bounded approximation requires facility in **each optimal** cluster. But optimal clustering is **sensitive** to agent deviations.
- Focus on instances with **stable** optimal clustering.
Perturbation Stability for k-Facility Location

Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- γ-stability: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.

For $\gamma \geq 2$, (metric) k-Facility Location solvable in poly-time!

Angelidakis Makarychev Makarychev, STOC 17

k-Facility Location remains hard for $\gamma \leq 2 - \epsilon$.

Real-world instances are stable: "Clustering is hard when it doesn't matter" [Roughgarden 17]
Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- **γ-stability**: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) does not affect optimal solution.

- For $\gamma \geq 2$, (metric) k-Facility Location solvable in poly-time!
 [Angelidakis Makarychev Makarychev, STOC 17]

 k-Facility Location remains **hard** for $\gamma \leq 2 - \varepsilon$.

![Diagram](image-url)
Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

- **γ-stability**: scaling down any distances by factor $\leq \gamma$ (while maintaining metric property) **does not affect optimal** solution.
- For $\gamma \geq 2$, (metric) k-Facility Location solvable in **poly-time**!
 - [Angelidakis Makarychev Makarychev, STOC 17]
 - k-Facility Location remains **hard** for $\gamma \leq 2 - \varepsilon$.
- Real-world instances are **stable**: “Clustering is hard when it doesn’t matter” [Roughgarden 17]
Question

Assume that “true” instances are indeed stable.
How much stability for truthfulness and reasonable approximation?
Question

Assume that “true” instances are indeed stable. How much stability for truthfulness and reasonable approximation?

Some Negative Observations

- Optimal solution not truthful for any stability $\gamma \geq 1$.

Truthful k-Facility Location in Stable Instances

Dimitris Fotakis

Jérôme, Algorithmic Game Theory and Strategyproof Facility Location
Question

Assume that “true” instances are indeed stable. How much stability for truthfulness and reasonable approximation?

Some Negative Observations

- Optimal solution not truthful for any stability $\gamma \geq 1$.
- For $k \geq 3$, deterministic anonymous truthful mechanisms for $(\sqrt{2} - \varepsilon)$-stable instances have unbounded approximation (based on [F. Tzamos, ICALP 13])
Truthful k-Facility Location in Stable Instances

Remedy and Main Results

- **Optimal** clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[
 \max \{ \text{diam}(C_i), \text{diam}(C_{i+1}) \} < d(C_i, C_{i+1})
 \]

For $(\sqrt{2} + 3)$-stable instances without singleton clusters, optimal solution is truthful.

For 5-stable instances, facility at second from the right in each optimal cluster is truthful and $(n-2)/2$-approximate.

For 5-stable instances, facility at random agent in each optimal cluster is truthful and 2-approximate.
Truthful k-Facility Location in Stable Instances

Remedy and Main Results

- **Optimal** clustering (C_1, \ldots, C_k) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[
 \max \{ \text{diam}(C_i), \text{diam}(C_{i+1}) \} < d(C_i, C_{i+1})
 \]
- For $(\sqrt{2} + 3)$-stable instances **without singleton** clusters, **optimal** solution is **truthful**.
Remedy and Main Results

- **Optimal** clustering \((C_1, \ldots, C_k)\) due to bounded approximation.
- Stability verification (necessary cond.): allocate facilities only if
 \[\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} < d(C_i, C_{i+1}) \]
- For \((\sqrt{2} + 3)\)-stable instances **without singleton** clusters,
 optimal solution is **truthful**.
- For 5-stable instances, facility at **second from the right** in each
 optimal cluster is **truthful** and \((n - 2)/2\)-approximate.
Remedy and Main Results

- **Optimal** clustering \((C_1, \ldots, C_k)\) due to bounded approximation.

- Stability verification (necessary cond.): allocate facilities only if
 \[
 \max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} < d(C_i, C_{i+1})
 \]

- For \((\sqrt{2} + 3)\)-stable instances **without singleton** clusters, **optimal** solution is **truthful**.

- For 5-stable instances, facility at **second from the right** in each optimal cluster is **truthful** and \((n - 2)/2\)-approximate.

- For 5-stable instances, facility at **random** agent in each optimal cluster is **truthful** and 2-approximate.
Optimal Mechanism and Approach to Truthfulness

If optimal clustering \((C_1, \ldots, C_k)\) has \textbf{singleton} clusters or \(\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})\), do not allocate facilities!

Otherwise, facilities at \((\text{med}(C_1), \ldots, \text{med}(C_k))\).
If optimal clustering \((C_1, \ldots, C_k)\) has singleton clusters or
\(\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})\), do not allocate facilities!

Otherwise, facilities at \((\text{med}(C_1), \ldots, \text{med}(C_k))\).

- Key deviation: rightmost agent of \(C_i\) deviates to \(C_j\), causing \(C_j\) to split and \(C_i\) to merge with \(C_{i+1}\).

- “Simulate” increase in cost of \(C_j\) by \(\gamma\)-perturbation and decrease in cost of \(C_j\) by agent’s cost improvement.
Optimal Mechanism and Approach to Truthfulness

If optimal clustering \((C_1, \ldots, C_k)\) has \textit{singleton} clusters or \(\max\{\text{diam}(C_i), \text{diam}(C_{i+1})\} \geq d(C_i, C_{i+1})\), do \textbf{not allocate} facilities!

Otherwise, facilities at \((\text{med}(C_1), \ldots, \text{med}(C_k))\).

- Key deviation: rightmost agent of \(C_i\) deviates to \(C_j\), causing \(C_j\) to split and \(C_i\) to merge with \(C_{i+1}\).
- “Simulate” increase in cost of \(C_j\) by \(\gamma\)-perturbation and decrease in cost of \(C_j\) by agent’s \textit{cost improvement}.
- Stability: optimal clustering \textbf{not affected} by deviation.
Open Questions

- Close the **gap in stability** for bounded approximation: lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).
- Extension to **trees** and study of **general metrics**.
Open Questions

- Close the **gap in stability** for bounded approximation: lower bound of $\sqrt{2}$ and upper bound of $2 + \sqrt{3}$ (or 5).
- Extension to **trees** and study of **general metrics**.
- Possibility of truthfulness **for all** instances and bounded approximation only **for stable**? (conjecture: **no**)
- Complexity of **determining** whether a k-Facility Location instance is **γ-stable**, esp. for line and trees?
Thank You for Everything and Goodbye

We, your many friends, deeply miss your kindness, openness, collaboration, passion for research and life, warm smile and true love for people, and so many things we kept learning from you.

Thank you and goodbye, Jérôme