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Dimitris Fotakis Jérôme, Algorithmic Game Theory and Strategyproof Facility Location



Jerómê and Algorithmic Game Theory

Spanning Trees Constructed by Selfish Agents
[Gourvés M., WINE 08]

Agents pay for first edge of path to root.
Pure Nash equilibrium iff strong PNE.
PoA = min{Θ(log n),depth of MST }

Strong Equilibria of (k-)Cut Games [Gourvés, M., WINE 09, TAMC 10]

Cut games admit strong PNE and SPoA = 2/3 .
k-Cut games admit 3-strong PNE.
If k-Cut games admit strong PNE (conjectured), SPoA = 2k−2

2k−1 .

Congestion Games with Capacited Resources
[Gourvés, M., Morreti, Thang, SAGT 12, ToCS 2015]

PNE exists, m = 2 resources, NP-hard to tell for m ≥ 3.
PNE for singleton games, by elegant 2-dimensional potential!
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Jerómê and Algorithmic Game Theory

Selfish Transportation [F. Gourvés M., SOFSEM 17]

Bus route selection, based on flow time
from entering bus until destination.
PNE exist (and computed efficiently ), if
buses have “identical routes”, or m = 2
and metric distances, or distances∈ {1, 2}.
PoA ≤ n for metric distances.

And Much More ...

Coordination mechanisms for scheduling selfish tasks with
setup times [Gourvés, M., Telelis, WINE 09]

Selfish graph coloring [Escoffier, Gourvés, M., CIAC 10]

Local taxes for Set Cover games [Escoffier Gourvés M. SIROCCO 10]

Project games: how competitive agents select tasks and when
decide to cooperate [Biló, Gourvés, M., CIAC 19]

Fair allocation of indivisible goods: approximation of the
maximin share for n = 3 and matroids [Gourvés, M., CIAC 17]
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Our Focus: k-Facility Location Games

Public Good Allocation for Strategic Agents on the Line

Agents N = {1, . . . ,n} on the real line .
Agent i wants a facility close to xi , which is private information .

Each agent i reports yi that may be different from xi.

(Randomized) Mechanism

Mechanism F maps reported ideal locations y = (y1, . . . , yn) to
(probability distribution over) set(s) of k facilities .
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Preferences and Truthfulness

Connection Cost
(Expected) distance of agent i’s true location to the nearest facility:

cost[xi,F(y)] = dist(xi,F(y)) = minc∈F(y)
∣∣xi − c

∣∣

Truthfulness
For any location profile x, agent i, and location y:

cost[xi,F(x)] ≤ cost[xi,F(y, x−i)]
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Variants and Social Efficiency

Candidate Facility Locations:

Unrestricted : Any point (esp. agent locations) can be facility.
Restricted : Facilities selected from m candidate locations C
Motivation from multi-winner elections: Chamberlin-Courant.

Social Objective

F(x) should optimize (or approximate) a given objective function .
Social Cost : minimize

∑n
i=1 cost[xi,F(x)]

Social Welfare : maximize
∑n

i=1

(
L − cost[xi,F(x)]

)
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1-Facility Location on the Line

Median Mechanism

Median of (x1, . . . , xn) : truthful and optimal , when unrestricted.

Candidate location closest to med(x1, . . . , xn) : truthful and
1/3-approximate , when restricted.

OPT social cost≈ n/4. OPT social welfare≈ 3n/4.
Median social cost≈ 3n/4. Median social welfare≈ n/4.

Anonymity and truthfulness iff generalized median [Moulin 80]

0 1½ – ε

n / 2 
agents 

n / 2 
agents 
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k-Facility Location on the Line, k ≥ 2

Percentile Mechanisms [Sui Boutilier Sandholm, IJCAI 13]

Optimal is not truthful: optimal clustering sensitive to deviations!

(α1, . . . , αk)-percentile mechanism (0 ≤ α1 < α2 < · · · < αk ≤ 1):
vote(ℓ) = #agents preferring ℓ ∈ C to other candidates in C.
j-th facility at leftmost ℓ ∈ C with≥ αj fraction of vote
on ℓ and its left .

Median is 0.5-percentile. Two-Extremes is (0, 1)-percentile.

Percentile mechanisms are anonymous and truthful .

5

n = 80 (0.1, 0.3, 0.5, 0.9)-percentile

10 8 12 8121474

k = 4
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k-Facility Location – Social Welfare

(k, q)-Conference Program Design
[Caragiannis Gourvés M., IJCAI 16], [F. Gourvés M., WINE 16]

Robust version of (kq)-Facility Location where each agent receives
utility from q different facilities.

Single-peaked preferences: in any set of kq facilities, each agent
receives utility from q consecutive facilities.

Generalization of single-peakedness and percentile mechanisms
to tuples of q consecutive candidate locations.
For any q ≥ 1, (1/(2k), 3/(2k), . . . , (2k − 1)/(2k))-percentile
applied to q-tuples is truthful and (2k−3)/(2k−1)-approximate .
Optimal solution through generalization of LP-based approach
in [Hajiaghayi et al., SODA 14]
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k-Facility Location – Social Cost

Truthful Location of 2 Facilities

Two-Extremes is (n − 2)-approximate and best possible.
[Procaccia Tenneholtz, EC 09], [F. Tzamos, ICALP 13]

Truthful Location of k ≥ 3 Facilities
Deterministic anonymous mechanisms have unbounded
approximation ratio [F. Tzamos, ICALP 13]

Best known randomized mechanism is n-approximate
[F. Tzamos, EC 13]

Bounded approximation requires facility in each optimal cluster.
But optimal clustering is sensitive to agent deviations.
Focus on instances with stable optimal clustering.
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Perturbation Stability for k-Facility Location

Perturbation Stability in Clustering [Bilu Linial, ITCS 10]

γ-stability : scaling down any distances by factor ≤ γ (while
maintaining metric property) does not affect optimal solution.

For γ ≥ 2 , (metric) k-Facility Location solvable in poly-time !
[Angelidakis Makarychev Makarychev, STOC 17]
k-Facility Location remains hard for γ ≤ 2 − ε .
Real-world instances are stable: “Clustering is hard when it doesn’t
matter” [Roughgarden 17]
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Truthful k-Facility Location in Stable Instances

Question

Assume that “true” instances are indeed stable .
How much stability for truthfulness and reasonable approximation?

Some Negative Observations

Optimal solution not truthful for any stability γ ≥ 1.

For k ≥ 3, deterministic anonymous truthful mechanisms for
(
√

2 − ε)-stable instances have unbounded approximation
(based on [F. Tzamos, ICALP 13])
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Truthful k-Facility Location in Stable Instances

Remedy and Main Results

Optimal clustering (C1, . . . ,Ck) due to bounded approximation.
Stability verification (necessary cond.): allocate facilities only if

max{diam(Ci),diam(Ci+1)} < d(Ci,Ci+1)

For (
√

2 + 3)-stable instances without singleton clusters,
optimal solution is truthful .
For 5-stable instances, facility at second from the right in each
optimal cluster is truthful and (n − 2)/2-approximate .
For 5-stable instances, facility at random agent in each optimal
cluster is truthful and 2-approximate .
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Optimal Mechanism for Stable k-Facility Location

Optimal Mechanism and Approach to Truthfulness

If optimal clustering (C1, . . . ,Ck) has singleton clusters or
max{diam(Ci),diam(Ci+1)} ≥ d(Ci,Ci+1), do not allocate facilities!
Otherwise, facilities at (med(C1), . . . ,med(Ck)).

Key deviation: rightmost agent of Ci deviates to Cj, causing
Cj to split and Ci to merge with Ci+1 .
“Simulate” increase in cost of Cj by γ-perturbation and decrease
in cost of Cj by agent’s cost improvement .

Stability: optimal clustering not affected by deviation.
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Research Directions

Open Questions

Close the gap in stability for bounded approximation :
lower bound of

√
2 and upper bound of 2 +

√
3 (or 5).

Extension to trees and study of general metrics .

Possibility of truthfulness for all instances and bounded
approximation only for stable ? (conjecture: no )
Complexity of determining whether a k-Facility Location
instance is γ-stable, esp. for line and trees?
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Thank You for Everything and Goodbye

We, your many friends, deeply miss your kindness,
openness, collaboration, passion for research and life,

warm smile and true love for people, and
so many things we kept learning from you.

Thank you and goodbye, Jérôme
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