Jérôme and computational social choice

Jérôme Lang
LAMSADE

6 December 2021

Jérôme and computational social choice

1. voting under incomplete preferences (2010-2013 +2016)
2. resource allocation and fairness (2012-2019)
3. multiwinner voting and proportional representation (2016-2019)

Jérôme's COMSOC coauthors :

- local : Nathanaël Barrot, Bernard Ries, Yann Chevaleyre, Bruno Escoffier, Laurent Gourvès, Jérôme Lang, Julien Lesca, Nicolas Maudet, Lydia Tlilane
- remote : Haris Aziz, Vittorio Bilò, Peter Biró, Ioannis Caragiannis, Piotr Faliszewski, Diodato Ferraioli, Dimitris Fotakis, Arkadii Slinko, Lirong Xia, William Zwicker

Voting under incomplete preferences

- Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM : Possible Winners when New Candidates Are Added : The Case of Scoring Rules. AAAI 2010
- Lirong Xia, Jérôme Lang, JM : Possible winners when new alternatives join : new results coming up! AAMAS 2011.
- Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM : Compilation and communication protocols for voting rules with a dynamic set of candidates. TARK 2011.
- Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM, Lirong Xia : New candidates welcome! Possible winners with respect to the addition of new candidates. Math. Soc. Sci. 2012
- Nathanaël Barrot, Laurent Gourvès, Jérôme Lang, JM, Bernard Ries : Possible Winners in Approval Voting. ADT 2013.
- Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, JM : How Hard Is It for a Party to Nominate an Election Winner? IJCAI 2016.

Voting under incomplete preferences

- for each voter : P_{i} is a partial order on the set of candidates.
- $P=\left\langle P_{1}, \ldots, P_{n}\right\rangle$ incomplete profile
- completion of P : voting profile

$$
T=\left\langle T_{1}, \ldots, T_{n}\right\rangle
$$

where each T_{i} is a linear order extending P_{i}.

- F voting rule (resolute or irresolute)
- c is a possible winner if there exists a completion of P for which c is a winner.
- c is a necessary winner if c is a winner in every completion of P.

Possible winners : missing candidates

Missing candidates The voters have expressed their votes on a set of candidates, and then some new candidates come in.

- Doodle : agents vote on a first set of dates, and then new dates become possible
- Recruiting committee : a preliminary vote is done before the last applicants are interviewed

Possible winners : missing candidates

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win ?
- 12 voters; initial candidates: $X=\{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority $a>b>c>y$
- Who are the possible winners?

a	5
b	4
c	3
y	

initial scores (before y is taken into account)

Possible winners : missing candidates

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win ?
- 12 voters; initial candidates: $X=\{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority $a>b>c>y$
- Who are the possible winners?

a	5	$\rightarrow 5$	
b	4	$\rightarrow 4$	nobody votes for y
c	3	$\rightarrow 3$	
y		$\rightarrow 0$	

Possible winners : missing candidates

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win ?
- 12 voters; initial candidates: $X=\{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority $a>b>c>y$
- Who are the possible winners?

a	5	$\rightarrow 3$	
b	4	$\rightarrow 4$	2 who voted for a
c	3	$\rightarrow 3$	now vote for y
y		$\rightarrow 2$	

Possible winners : missing candidates

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win ?
- 12 voters; initial candidates: $X=\{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority $a>b>c>y$
- Who are the possible winners?

a	5	$\rightarrow 2$	3 who voted for a
b	4	$\rightarrow 2$	and 2 who voted for b
c	3	$\rightarrow 3$	now vote for y, who wins!
y		$\rightarrow 5$	c cannot win

Possible winners : missing candidates

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win ?
- 12 voters; initial candidates: $X=\{a, b, c\}$; two new candidates y_{1}, y_{2}
- plurality with tie-breaking priority $a>b>c>y_{1}>y_{2}$
- Who are the possible winners?

a	5	2	
b	4	2	
c	3	3	c wins
y		3	
y^{\prime}		2	

Possible winners : missing candidates

a	5	$\rightarrow 2$	a	5	2
b	4	$\rightarrow 2$	b	4	2
c	3	$\rightarrow 3$	c	3	3
y		$\rightarrow 5$	y	3	
			y^{\prime}	2	

General result for plurality :

- P_{X} initial profile on set of initial candidates X
- ntop $\left(P_{X}, x\right)$ number of voters who rank x in top position in P_{X} (plurality score of x in P_{X}).
Then $x \in X$ is a possible winner for P_{X} with respect to the addition of k new candidates if and only if

$$
n \operatorname{top}\left(P_{X}, x\right) \geq \frac{1}{k} \cdot \sum_{x_{i} \in X} \max \left(0, \operatorname{ntop}\left(P_{X}, x_{i}\right)-\operatorname{ntop}\left(P_{X}, x\right)\right)
$$

- characterization and computation of possible winners for many voting rules : Chevaleyre, Lang, Maudet and Monnot (2010) ; Xia, Lang and Monnot (2011) ; Chevaleyre, Lang, Maudet, Monnot and Xia (2012)

Voting under incomplete preferences: other works

- compilation-communication protocols (Chevaleyre, Lang, Maudet, Monnot 11) : how can we compile the information about the preferences of voters over the initial candidates, and depending in this compilation, what do we have to elicit about the new candidates?
- possible and necessary winners in approval voting (Barrot, Gourvès, Lang, Monnot, Ries 13) : given a profile $\left(\succ_{1}, \ldots, \succ_{n}\right)$ of rankings and assuming voters cast approval votes that are consistent with their preferences, who are the possible approval winners? what are the possible sets of approval co-winners?
- voting with primaries (Faliszewski, Gourvès, Lang, Lesca, Monnot) : candidates are split between parties, each party nominates exactly one candidate for the final election : how hard is it to decide if (1) there is a set of nominees such that a candidate from a party p wins in the final election? (2) if a candidate from p always wins, irrespective who is nominated?

Resource allocation and fairness

- Laurent Gourvès, JM, Lydia Tlilane : Approximate Tradeoffs on Matroids. ECAI 2012.
- Laurent Gourvès, JM, Lydia Tlilane : A Matroid Approach to the Worst Case Allocation of Indivisible Goods. IJCAI 2013. + journal version in TCS, 2015.
- Bruno Escoffier, Laurent Gourvès, JM : Fair solutions for some multiagent optimization problems. Auton. Agents Multi Agent Syst. 2013
- Laurent Gourvès, JM, Lydia Tlilane : Near Fairness in Matroids. ECAI 2014.
- Diodato Ferraioli, Laurent Gourvès, JM : On regular and approximately fair allocations of indivisible goods. AAMAS 2014.
- Haris Aziz, Péter Biró, Jérôme Lang, Julien Lesca, JM : Optimal Reallocation under Additive and Ordinal Preferences. AAMAS 2016 + journal version in TCS, 2019.
- Laurent Gourvès, JM : Approximate Maximin Share Allocations in Matroids. CIAC 2017.
+ journal version in TCS, 2019.

Resource allocation and fairness

- agents $N=\{1, \ldots, n\}$
- indivisible goods $O=\left\{o_{1}, \ldots, o_{m}\right\}$
- normalized additive utilities : $u_{i}\left(o_{j}\right) \in \mathbb{R}^{+}$with $\sum_{j} u_{i}\left(o_{j}\right)=1$
- for $A \subseteq O, u_{i}(A)=\sum_{o_{j} \in A} u_{i}\left(o_{j}\right)$
- allocation $\pi: N \rightarrow 2^{O}$ with $\pi(i) \cap \pi(j)=\emptyset$ for $i \neq j$
- maxmin allocation : π maximizing $\min _{i} u_{i}(\pi(i))$

If $\alpha=\max _{i} \max _{j} u_{i}\left(o_{j}\right)$ is the maximal valuation assigned by an agnt to a single good then what is a lower bound $W_{n}(\alpha)$ on $\min _{i} u_{i}(\pi(i))$?

- $W_{n}(1)=0$
- $W_{n}(1 / n)=1 / n$
- inbetween?
(Gourvès, Monnot and Tlinane 2013/2015) :
- improve previously known bounds
- polynomial algorithm giving each agent i at least $W_{n}\left(\alpha_{i}\right)$
- generalization beyond resource allocation, to matroid-based domains

Resource allocation and fairness

- for each individual i, the maximin fair share value of i is the value she gives to the worst share of the best possible partition
- MaxMinFS $($ Ann $)=10$
- MaxMinFS $(B o b)=11$

	a	b	c	d
Ann	10	5	7	0
Bob	9	6	7	2

- π satisfies the maxmin fair share property if each individual obtains at least her maxmin fair share value.
- computing the maximin fair share if an agent is hard
- (Gourvès and Monnot, 2017/19) : polynomial approximations + generalization to matroids

Resource allocation and fairness

- (Escoffier, Gourvès and Monnot, 2013) : maxmin collective combinatorial optimisation problems, especially spanning trees for collective network design.
- (Ferraioli, Gourvès and Monnot, 2014) : finding a maxmin allocation under the condition that each agent receives the same number of goods (regularity).
- (Aziz, Biró, Lang, Lesca, Monnot, 2016/19) : Pareto-efficient reallocation under additive/responsive preferences
- finding an arbitrary Pareto-optimal allocation is easy but checking whether an allocation is Pareto-optimal can be hard
- equivalent to checking that the allocated objects cannot be reallocated in such a way that one agent prefers her new allocation to the old one and no agent prefers the old one to the new one.
- additive utilities : hardness results and polynomial-time algorithms under different restrictions
- responsive preferences : characterizations + polynomial algorithm

Multiwinner voting and proportional representation

- loannis Caragiannis, Laurent Gourvès, JM : Achieving Proportional Representation in Conference Programs. IJCAI 2016.
- Dimitris Fotakis, Laurent Gourvès, JM : Conference Program Design with Single-Peaked and Single-Crossing Preferences. WINE 2016.
- Haris Aziz, Jérôme Lang, JM : Computing Pareto Optimal Committees. IJCAI 2016 : 60-66
- Jérôme Lang, JM, Arkadii Slinko, William S. Zwicker : Beyond Electing and Ranking : Collective Dominating Chains, Dominating Subsets and Dichotomies. AAMAS 2017.
- Haris Aziz, JM : Computing and testing Pareto optimal committees. Auton. Agents Multi Agent Syst. (2020)

Proportional Conference Program Design

Input:

- $N=\{1, \ldots, n\}$ agents (participants)
- $X=\left\{x_{1}, \ldots, x_{m}\right\}$ items (papers)
- $k \in \mathbb{N}^{*}$ (number of slots)
- $q \in \mathbb{N}^{*}$ (number of rooms) such that $m \geq k q$
- $u_{i}: X \rightarrow \mathbb{R}^{+}$utility function of agent i

Output:

- \mathcal{S} collection of k disjoint subsets S_{1}, \ldots, S_{k} of X with $\left|S_{j}\right|=q$ for all j
- utility of agent i for program $\mathcal{S}: u_{i}(\mathcal{S})=\sum_{j=1}^{k} \max _{x \in S_{j}} u_{i}(x)$
- find a solution maximizing social welfare : find S_{1}, \ldots, S_{k} maximizing

$$
\left(\sum_{i=1}^{n} u_{i}(\mathcal{S})=\right) \sum_{i=1}^{n} \sum_{j=1}^{k} \max _{x \in S_{j}} u_{i}(x)
$$

Proportional Conference Program Design

Input:

- $N=\{1, \ldots, n\}, X=\left\{x_{1}, \ldots, x_{m}\right\}$
- $k \in \mathbb{N}^{*}, q \in \mathbb{N}^{*}, m \geq k q$
- $u_{i}: X \rightarrow \mathbb{R}^{+}$

Output : \mathcal{S} collection of k disjoint subsets S_{1}, \ldots, S_{k} of X with $\left|S_{j}\right|=q$ for all j, maximizing $\sum_{i=1}^{n} \sum_{j=1}^{k} \max _{x \in S_{j}} u_{i}(x)$

i	$u_{i}(a)$	$u_{i}(b)$	$u_{i}(c)$	$u_{i}(d)$	$u_{i}(e)$	$u_{i}(f)$	$u_{i}(g)$
1	4	3	5	1	2	0	4
2	1	4	3	9	6	2	1
3	6	1	2	0	0	4	6

$$
S_{1}=\{a, d\}, S_{2}=\{b, f\}, S_{3}=\{c, g\}:
$$

i	$u_{i}\left(S_{1}\right)$	$u_{i}\left(S_{2}\right)$	$u_{i}\left(S_{3}\right)$
1	4	3	5
2	9	4	3
3	5	3	6

Proportional Conference Program Design

Input:

- $N=\{1, \ldots, n\}$ agents (participants)
- $X=\left\{x_{1}, \ldots, x_{m}\right\}$ items (papers)
- $k \in \mathbb{N}^{*}$ (number of slots)
- $q \in \mathbb{N}^{*}$ (number of rooms) such that $m \geq k q$
- $u_{i}: X \rightarrow \mathbb{R}^{+}$utility function of agent i

Output : \mathcal{S} collection of k disjoint subsets S_{1}, \ldots, S_{k} of X with $\left|S_{j}\right|=q$ for all j, maximizing $\sum_{i=1}^{n} \sum_{j=1}^{k} \max _{x \in S_{j}} u_{i}(x)$
Particular case : $k=1$

- output: S with $|S|=q$ maximizing $\sum_{i=1}^{n} \max _{x \in S} u_{i}(x)$
- Chamberlin-Courant multiwinner voting rule

Proportional Conference Program Design

Input:

- $N=\{1, \ldots, n\}, X=\left\{x_{1}, \ldots, x_{m}\right\}$
- $k \in \mathbb{N}^{*}, q \in \mathbb{N}^{*}, m \geq k q$
- $u_{i}: X \rightarrow \mathbb{R}^{+}$
- NP-hardness already known for $k=1$
- NP-hard also for $k=2, m=2 q$ and dichotomous utilities (Caragiannis, Gourvès, Monnot 16)
- approximation algorithms (Caragiannis, Gourvès, Monnot 16)
- conference program design under single-peaked or single-crossing preferences : tractability + strategyproof mechanisms (Fotakis, Gourvès, Monnot 16)

Computing Pareto Optimal Committees

- $N=\{1, \ldots, n\}$ voters
- $X=\left\{x_{1}, \ldots, x_{m}\right\}$ candidates
- each voter expresses a weak order \succsim_{i} over $X: P=\left(\succsim_{1}, \ldots, \succsim_{n}\right)$.
- $S_{k}(X)=\{S \subset X:|S|=k\}$
- preference extension : \succ_{i}^{E} extension of \succsim_{i} over $S_{k}(X)$ (with $\succsim_{i}^{E}=\succsim_{i}$ for $k=1$)
- Examples : let $A, B \in S_{k}(X)$;
- responsive extension : $A \succsim^{R} B$ if there is an bijection $f: X \rightarrow X$ such that for all $x \in A, x \succsim f(x)$
- leximax extension : $A \succsim^{\text {leximax }} B$ if the best element in A is preferred to the best element in B, or if they are equally good but the second best element in A is preferred to the second best element in B, etc.
- two other extensions
- for each of these preference extensions, characterise and compute Pareto-optimal committees in $S_{k}(X)$

Collective Dominating Chains, Dominating Subsets and Dichotomies

- Traditional voting setting : find one alternative (or a set of tied alternatives) based on the voters' preferences.
- Less traditional settings:

1. electing a committee of k persons (multiwinner election)
2. finding a ranked list of k candidates for an election based on party lists, or a ranked shortlist of k names ;
3. finding an optimal way of partitioning students between two or more groups with homogeneous level of ability in each group given their results on several tests.
4. more complex settings : k may not be fixed, the size of the partitions may be constrained etc.

- Define aggregation functions where the output can have any desired structure.
- Focus on some particular structures : dominating chains, dominating subsets, dichotomies.

Collective Dominating Chains, Dominating Subsets and Dichotomies

a plain dominating 2-chain

a plain dominating 2-subset

an extended dominating 2-chain

an extended dominating 2-subset

A plain/extended dichotomy is a plain/extended dominating k-subset for some $k \in\{1, \ldots, m-1\}$.

