Jérôme and computational social choice

Jérôme Lang LAMSADE

6 December 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Jérôme and computational social choice

- 1. voting under incomplete preferences (2010-2013 + 2016)
- 2. resource allocation and fairness (2012-2019)
- 3. multiwinner voting and proportional representation (2016-2019)

Jérôme's COMSOC coauthors :

- local : Nathanaël Barrot, Bernard Ries, Yann Chevaleyre, Bruno Escoffier, Laurent Gourvès, Jérôme Lang, Julien Lesca, Nicolas Maudet, Lydia Tlilane
- remote : Haris Aziz, Vittorio Bilò, Peter Biró, Ioannis Caragiannis, Piotr Faliszewski, Diodato Ferraioli, Dimitris Fotakis, Arkadii Slinko, Lirong Xia, William Zwicker

Voting under incomplete preferences

- Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM : Possible Winners when New Candidates Are Added : The Case of Scoring Rules. AAAI 2010
- Lirong Xia, Jérôme Lang, JM : Possible winners when new alternatives join : new results coming up ! AAMAS 2011.
- Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM : Compilation and communication protocols for voting rules with a dynamic set of candidates. TARK 2011.
- Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM, Lirong Xia : New candidates welcome ! Possible winners with respect to the addition of new candidates. Math. Soc. Sci. 2012
- Nathanaël Barrot, Laurent Gourvès, Jérôme Lang, JM, Bernard Ries : Possible Winners in Approval Voting. ADT 2013.
- Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, JM : How Hard Is It for a Party to Nominate an Election Winner? IJCAI 2016.

Voting under incomplete preferences

- for each voter : P_i is a partial order on the set of candidates.
- $P = \langle P_1, \ldots, P_n \rangle$ incomplete profile
- completion of P : voting profile

$$T = \langle T_1, \ldots, T_n \rangle$$

where each T_i is a linear order extending P_i .

- F voting rule (resolute or irresolute)
- c is a possible winner if there exists a completion of P for which c is a winner.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

c is a necessary winner if c is a winner in every completion of P.

Missing candidates The voters have expressed their votes on a set of candidates, and then some new candidates come in.

- Doodle : agents vote on a first set of dates, and then new dates become possible
- Recruiting committee : a preliminary vote is done before the last applicants are interviewed

_	voter n		voter 2	voter 1
	Ь		b	С
$(d \circ 2)$	\downarrow		\downarrow	\downarrow
(u, e :)	а	• • •	С	а
	\downarrow		Ļ	\downarrow
	Ċ		a	b

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win?
- ▶ 12 voters; initial candidates : $X = \{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority a > b > c > y
- Who are the possible winners?
 - a 5
 b 4
 c 3
 y initial scores (before y is taken into account)

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win?
- ▶ 12 voters; initial candidates : $X = \{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority a > b > c > y
- Who are the possible winners?

$$\begin{array}{cccc} \mathbf{a} & 5 & \rightarrow \mathbf{5} \\ b & 4 & \rightarrow 4 \\ c & 3 & \rightarrow 3 \\ y & & \rightarrow 0 \end{array} \qquad \text{nobody votes for } y$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win?
- ▶ 12 voters; initial candidates : $X = \{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority a > b > c > y
- Who are the possible winners?

а	5	ightarrow 3	
b	4	\rightarrow 4	2 who voted for a
с	3	ightarrow 3	now vote for y
y		$\rightarrow 2$	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win?
- ▶ 12 voters; initial candidates : $X = \{a, b, c\}$; one new candidate y.
- plurality with tie-breaking priority a > b > c > y
- Who are the possible winners?
 - $a \quad 5 \quad \rightarrow 2 \quad 3 \text{ who voted for } a$
 - b 4 \rightarrow 2 and 2 who voted for b
 - **c** $3 \rightarrow 3$ now vote for y, who wins!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $y \rightarrow 5$ c cannot win

- (For reasonable voting rules) all new candidates must be possible winners.
- Who among the initial candidates can win?
- 12 voters; initial candidates: X = {a, b, c}; two new candidates y1, y2
- plurality with tie-breaking priority $a > b > c > y_1 > y_2$
- Who are the possible winners?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2	F	~ 2	а	5	2
d	5	$\rightarrow 2$	h	4	2
b	4	$\rightarrow 2$			~
~	2	. 2	С	3	3
C	5	\rightarrow)	V		3
V		\rightarrow 5	у,		~
2			У'		2

General result for plurality :

- P_X initial profile on set of initial candidates X
- ntop(P_X, x) number of voters who rank x in top position in P_X (plurality score of x in P_X).

Then $x \in X$ is a possible winner for P_X with respect to the addition of k new candidates if and only if

$$ntop(P_X, x) \geq \frac{1}{k} \cdot \sum_{x_i \in X} \max(0, ntop(P_X, x_i) - ntop(P_X, x))$$

 characterization and computation of possible winners for many voting rules : Chevaleyre, Lang, Maudet and Monnot (2010); Xia, Lang and Monnot (2011); Chevaleyre, Lang, Maudet, Monnot and Xia (2012)

Voting under incomplete preferences : other works

- compilation-communication protocols (Chevaleyre, Lang, Maudet, Monnot 11) : how can we compile the information about the preferences of voters over the initial candidates, and depending in this compilation, what do we have to elicit about the new candidates?
- ▶ possible and necessary winners in approval voting (Barrot, Gourvès, Lang, Monnot, Ries 13) : given a profile $(\succ_1, \ldots, \succ_n)$ of rankings and assuming voters cast approval votes that are consistent with their preferences, who are the possible approval winners? what are the possible sets of approval co-winners?
- voting with primaries (Faliszewski, Gourvès, Lang, Lesca, Monnot) : candidates are split between parties, each party nominates exactly one candidate for the final election : how hard is it to decide if (1) there is a set of nominees such that a candidate from a party p wins in the final election ? (2) if a candidate from p always wins, irrespective who is nominated ?

- Laurent Gourvès, JM, Lydia Tlilane : Approximate Tradeoffs on Matroids. ECAI 2012.
- Laurent Gourvès, JM, Lydia Tlilane : A Matroid Approach to the Worst Case Allocation of Indivisible Goods. IJCAI 2013.
 + journal version in TCS, 2015.
- Bruno Escoffier, Laurent Gourvès, JM : Fair solutions for some multiagent optimization problems. Auton. Agents Multi Agent Syst. 2013
- Laurent Gourvès, JM, Lydia Tlilane : Near Fairness in Matroids. ECAI 2014.
- Diodato Ferraioli, Laurent Gourvès, JM : On regular and approximately fair allocations of indivisible goods. AAMAS 2014.
- Haris Aziz, Péter Biró, Jérôme Lang, Julien Lesca, JM : Optimal Reallocation under Additive and Ordinal Preferences. AAMAS 2016 + journal version in TCS, 2019.
- Laurent Gourvès, JM : Approximate Maximin Share Allocations in Matroids. CIAC 2017.
 - + journal version in TCS, 2019.

• agents
$$N = \{1, \ldots, n\}$$

- indivisible goods $O = \{o_1, \ldots, o_m\}$
- ▶ normalized additive utilities : $u_i(o_j) \in \mathbb{R}^+$ with $\sum_i u_i(o_j) = 1$

• for
$$A \subseteq O$$
, $u_i(A) = \sum_{o_j \in A} u_i(o_j)$

- ▶ allocation $\pi: N \to 2^O$ with $\pi(i) \cap \pi(j) = \emptyset$ for $i \neq j$
- maxmin allocation : π maximizing min_i $u_i(\pi(i))$

If $\alpha = \max_i \max_j u_i(o_j)$ is the maximal valuation assigned by an agnt to a single good then what is a lower bound $W_n(\alpha)$ on min_i $u_i(\pi(i))$?

- $W_n(1) = 0$
- $\blacktriangleright W_n(1/n) = 1/n$
- inbetween ?

(Gourvès, Monnot and Tlinane 2013/2015) :

- improve previously known bounds
- ▶ polynomial algorithm giving each agent *i* at least $W_n(\alpha_i)$
- generalization beyond resource allocation, to matroid-based domains

for each individual *i*, the maximin fair share value of *i* is the value she gives to the worst share of the best possible partition

$$MaxMinFS(i) := \max_{\pi} \min_{j} u_i(\pi(j))$$

	а	b	с	d
Ann	10	5	7	0
Bob	9	6	7	2

MaxMinFS(Bob) = 11

	а	b	С	d
Ann	10	5	7	0
Bob	9	6	7	2

- π satisfies the maxmin fair share property if each individual obtains at least her maxmin fair share value.
- computing the maximin fair share if an agent is hard
- (Gourvès and Monnot, 2017/19) : polynomial approximations + generalization to matroids

- (Escoffier, Gourvès and Monnot, 2013) : maxmin collective combinatorial optimisation problems, especially spanning trees for collective network design.
- (Ferraioli, Gourvès and Monnot, 2014) : finding a maxmin allocation under the condition that each agent receives the same number of goods (regularity).
- (Aziz, Biró, Lang, Lesca, Monnot, 2016/19) : Pareto-efficient reallocation under additive/responsive preferences
 - finding an arbitrary Pareto-optimal allocation is easy but checking whether an allocation is Pareto-optimal can be hard
 - equivalent to checking that the allocated objects cannot be reallocated in such a way that one agent prefers her new allocation to the old one and no agent prefers the old one to the new one.
 - additive utilities : hardness results and polynomial-time algorithms under different restrictions
 - responsive preferences : characterizations + polynomial algorithm

Multiwinner voting and proportional representation

- Ioannis Caragiannis, Laurent Gourvès, JM : Achieving Proportional Representation in Conference Programs. IJCAI 2016.
- Dimitris Fotakis, Laurent Gourvès, JM : Conference Program Design with Single-Peaked and Single-Crossing Preferences. WINE 2016.
- Haris Aziz, Jérôme Lang, JM : Computing Pareto Optimal Committees. IJCAI 2016 : 60-66
- Jérôme Lang, JM, Arkadii Slinko, William S. Zwicker : Beyond Electing and Ranking : Collective Dominating Chains, Dominating Subsets and Dichotomies. AAMAS 2017.
- Haris Aziz, JM : Computing and testing Pareto optimal committees. Auton. Agents Multi Agent Syst. (2020)

Input :

- $N = \{1, \ldots, n\}$ agents (participants)
- $X = \{x_1, \ldots, x_m\}$ items (papers)
- ▶ $k \in \mathbb{N}^*$ (number of slots)
- ▶ $q \in \mathbb{N}^*$ (number of rooms) such that $m \ge kq$
- $u_i: X \to \mathbb{R}^+$ utility function of agent i

Output :

- ▶ S collection of k disjoint subsets S_1, \ldots, S_k of X with $|S_j| = q$ for all j
- utility of agent *i* for program $S : u_i(S) = \sum_{j=1}^k \max_{x \in S_j} u_i(x)$
- find a solution maximizing social welfare : find S_1, \ldots, S_k maximizing

$$\left(\sum_{i=1}^n u_i(\mathcal{S}) = \right) \sum_{i=1}^n \sum_{j=1}^k \max_{x \in S_j} u_i(x)$$

Input :

- $N = \{1, ..., n\}, X = \{x_1, ..., x_m\}$
- ► $k \in \mathbb{N}^*$, $q \in \mathbb{N}^*$, $m \ge kq$
- ▶ $u_i: X \to \mathbb{R}^+$

Output : S collection of k disjoint subsets S_1, \ldots, S_k of X with $|S_j| = q$ for all j, maximizing $\sum_{i=1}^n \sum_{j=1}^k \max_{x \in S_j} u_i(x)$

i	u _i (a)	$u_i(b)$	$u_i(c)$	$u_i(d)$	$u_i(e)$	$u_i(f)$	$u_i(g)$
1	4	3	5	1	2	0	4
2	1	4	3	9	6	2	1
3	6	1	2	0	0	4	6

 $S_1 = \{a, d\}, S_2 = \{b, f\}, S_3 = \{c, g\}$:

i	$u_i(S_1)$	$u_i(S_2)$	$u_i(S_3)$	2
1	4	3	5	$\left \sum_{i=1}^{3} \frac{1}{2} \right = 12$
2	9	4	3	$\Rightarrow \sum_{i=1}^{n} u_i(0) = 42$
3	5	3	6	/=1

Input :

- $N = \{1, \dots, n\}$ agents (participants)
- $X = \{x_1, \ldots, x_m\}$ items (papers)
- $k \in \mathbb{N}^*$ (number of slots)
- ▶ $q \in \mathbb{N}^*$ (number of rooms) such that $m \ge kq$
- $u_i: X \to \mathbb{R}^+$ utility function of agent i

Output : S collection of k disjoint subsets S_1, \ldots, S_k of X with $|S_j| = q$ for all j, maximizing $\sum_{i=1}^n \sum_{j=1}^k \max_{x \in S_j} u_i(x)$

Particular case : k = 1

- output : S with |S| = q maximizing $\sum_{i=1}^{n} \max_{x \in S} u_i(x)$
- Chamberlin-Courant multiwinner voting rule

Input :

- $N = \{1, ..., n\}, X = \{x_1, ..., x_m\}$
- ▶ $k \in \mathbb{N}^*$, $q \in \mathbb{N}^*$, $m \ge kq$
- $u_i: X \to \mathbb{R}^+$
- NP-hardness already known for k = 1
- ▶ NP-hard also for k = 2, m = 2q and dichotomous utilities (Caragiannis, Gourvès, Monnot 16)
- approximation algorithms (Caragiannis, Gourvès, Monnot 16)
- conference program design under single-peaked or single-crossing preferences : tractability + strategyproof mechanisms (Fotakis, Gourvès, Monnot 16)

Computing Pareto Optimal Committees

- $N = \{1, \ldots, n\}$ voters
- $X = \{x_1, \ldots, x_m\}$ candidates
- each voter expresses a weak order \succeq_i over $X : P = (\succeq_1, \ldots, \succeq_n)$.

$$\flat S_k(X) = \{S \subset X : |S| = k\}$$

- preference extension : ≻^E_i extension of ≿_i over S_k(X) (with ≿^E_i =≿_i for k = 1)
- Examples : let $A, B \in S_k(X)$;
 - responsive extension : A ≿^R B if there is an bijection f : X → X such that for all x ∈ A, x ≿ f(x)
 - ► leximax extension : A > leximax B if the best element in A is preferred to the best element in B, or if they are equally good but the second best element in A is preferred to the second best element in B, etc.

- two other extensions
- ▶ for each of these preference extensions, characterise and compute Pareto-optimal committees in S_k(X)

Collective Dominating Chains, Dominating Subsets and Dichotomies

- Traditional voting setting : find one alternative (or a set of tied alternatives) based on the voters' preferences.
- Less traditional settings :
 - 1. electing a committee of k persons (multiwinner election)
 - finding a *ranked list* of k candidates for an election based on party lists, or a ranked shortlist of k names;
 - finding an optimal way of partitioning students between two or more groups with homogeneous level of ability in each group given their results on several tests.
 - 4. more complex settings : *k* may not be fixed, the size of the partitions may be constrained etc.
- Define aggregation functions where the output can have any desired structure.
- Focus on some particular structures : dominating chains, dominating subsets, dichotomies.

Collective Dominating Chains, Dominating Subsets and Dichotomies

a *plain* dominating 2-chain

an extended dominating 2-chain

a plain dominating 2-subset an extended dominating 2-subset $x_1 \quad x_2$ $x_1 \rightarrow x_2$ $x_3 \quad x_4 \quad x_5$ $x_3 \rightarrow x_4 \rightarrow x_5$

A plain/extended dichotomy is a plain/extended dominating k-subset for some $k \in \{1, ..., m-1\}$.