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Jérôme and computational social choice

1. voting under incomplete preferences (2010-2013 + 2016)

2. resource allocation and fairness (2012-2019)

3. multiwinner voting and proportional representation (2016-2019)

Jérôme’s COMSOC coauthors :

I local : Nathanaël Barrot, Bernard Ries, Yann Chevaleyre, Bruno
Escoffier, Laurent Gourvès, Jérôme Lang, Julien Lesca, Nicolas
Maudet, Lydia Tlilane

I remote : Haris Aziz, Vittorio Bilò, Peter Biró, Ioannis Caragiannis,
Piotr Faliszewski, Diodato Ferraioli, Dimitris Fotakis, Arkadii Slinko,
Lirong Xia, William Zwicker



Voting under incomplete preferences

I Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM : Possible
Winners when New Candidates Are Added : The Case of Scoring
Rules. AAAI 2010

I Lirong Xia, Jérôme Lang, JM : Possible winners when new
alternatives join : new results coming up ! AAMAS 2011.

I Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM : Compilation
and communication protocols for voting rules with a dynamic set of
candidates. TARK 2011.

I Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, JM, Lirong Xia :
New candidates welcome ! Possible winners with respect to the
addition of new candidates. Math. Soc. Sci. 2012

I Nathanaël Barrot, Laurent Gourvès, Jérôme Lang, JM, Bernard
Ries : Possible Winners in Approval Voting. ADT 2013.

I Piotr Faliszewski, Laurent Gourvès, Jérôme Lang, Julien Lesca, JM :
How Hard Is It for a Party to Nominate an Election Winner ? IJCAI
2016.



Voting under incomplete preferences

I for each voter : Pi is a partial order on the set of candidates.

I P = 〈P1, . . . ,Pn〉 incomplete profile

I completion of P : voting profile

T = 〈T1, . . . ,Tn〉

where each Ti is a linear order extending Pi .

I F voting rule (resolute or irresolute)

I c is a possible winner if there exists a completion of P for which c is
a winner.

I c is a necessary winner if c is a winner in every completion of P.



Possible winners : missing candidates

Missing candidates The voters have expressed their votes on a set of
candidates, and then some new candidates come in.

I Doodle : agents vote on a first set of dates, and then new dates
become possible

I Recruiting committee : a preliminary vote is done before the last
applicants are interviewed

voter 1 voter 2 . . . voter n
c
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b

b
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. . .
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(d , e ?)



Possible winners : missing candidates

I (For reasonable voting rules) all new candidates must be possible
winners.

I Who among the initial candidates can win ?

I 12 voters ; initial candidates : X = {a, b, c} ; one new candidate y .

I plurality with tie-breaking priority a > b > c > y

I Who are the possible winners ?

a 5
b 4
c 3
y

initial scores (before y is taken into account)



Possible winners : missing candidates

I (For reasonable voting rules) all new candidates must be possible
winners.

I Who among the initial candidates can win ?

I 12 voters ; initial candidates : X = {a, b, c} ; one new candidate y .

I plurality with tie-breaking priority a > b > c > y

I Who are the possible winners ?

a 5 → 5
b 4 → 4
c 3 → 3
y → 0

nobody votes for y



Possible winners : missing candidates

I (For reasonable voting rules) all new candidates must be possible
winners.

I Who among the initial candidates can win ?

I 12 voters ; initial candidates : X = {a, b, c} ; one new candidate y .

I plurality with tie-breaking priority a > b > c > y

I Who are the possible winners ?

a 5 → 3
b 4 → 4
c 3 → 3
y → 2

2 who voted for a
now vote for y



Possible winners : missing candidates

I (For reasonable voting rules) all new candidates must be possible
winners.

I Who among the initial candidates can win ?

I 12 voters ; initial candidates : X = {a, b, c} ; one new candidate y .

I plurality with tie-breaking priority a > b > c > y

I Who are the possible winners ?

a 5 → 2
b 4 → 2
c 3 → 3
y → 5

3 who voted for a
and 2 who voted for b
now vote for y , who wins !
c cannot win



Possible winners : missing candidates

I (For reasonable voting rules) all new candidates must be possible
winners.

I Who among the initial candidates can win ?

I 12 voters ; initial candidates : X = {a, b, c} ; two new candidates
y1, y2

I plurality with tie-breaking priority a > b > c > y1 > y2
I Who are the possible winners ?

a 5 2
b 4 2
c 3 3 c wins
y 3
y ′ 2



Possible winners : missing candidates

a 5 → 2
b 4 → 2
c 3 → 3
y → 5

a 5 2
b 4 2
c 3 3
y 3
y ′ 2

General result for plurality :

I PX initial profile on set of initial candidates X

I ntop(PX , x) number of voters who rank x in top position in PX

(plurality score of x in PX ).

Then x ∈ X is a possible winner for PX with respect to the addition of k
new candidates if and only if

ntop(PX , x) ≥ 1

k
.
∑
xi∈X

max(0, ntop(PX , xi )− ntop(PX , x))

I characterization and computation of possible winners for many
voting rules : Chevaleyre, Lang, Maudet and Monnot (2010) ; Xia, Lang

and Monnot (2011) ; Chevaleyre, Lang, Maudet, Monnot and Xia (2012)



Voting under incomplete preferences : other works

I compilation-communication protocols (Chevaleyre, Lang, Maudet,
Monnot 11) : how can we compile the information about the
preferences of voters over the initial candidates, and depending in
this compilation, what do we have to elicit about the new
candidates ?

I possible and necessary winners in approval voting (Barrot, Gourvès,
Lang, Monnot, Ries 13) : given a profile (�1, . . . ,�n) of rankings
and assuming voters cast approval votes that are consistent with
their preferences, who are the possible approval winners ? what are
the possible sets of approval co-winners ?

I voting with primaries (Faliszewski, Gourvès, Lang, Lesca, Monnot) :
candidates are split between parties, each party nominates exactly
one candidate for the final election : how hard is it to decide if (1)
there is a set of nominees such that a candidate from a party p wins
in the final election ? (2) if a candidate from p always wins,
irrespective who is nominated ?



Resource allocation and fairness
I Laurent Gourvès, JM, Lydia Tlilane : Approximate Tradeoffs on

Matroids. ECAI 2012.

I Laurent Gourvès, JM, Lydia Tlilane : A Matroid Approach to the
Worst Case Allocation of Indivisible Goods. IJCAI 2013.
+ journal version in TCS, 2015.

I Bruno Escoffier, Laurent Gourvès, JM : Fair solutions for some
multiagent optimization problems. Auton. Agents Multi Agent Syst.
2013

I Laurent Gourvès, JM, Lydia Tlilane : Near Fairness in Matroids.
ECAI 2014.

I Diodato Ferraioli, Laurent Gourvès, JM : On regular and
approximately fair allocations of indivisible goods. AAMAS 2014.

I Haris Aziz, Péter Biró, Jérôme Lang, Julien Lesca, JM : Optimal
Reallocation under Additive and Ordinal Preferences. AAMAS 2016
+ journal version in TCS, 2019.

I Laurent Gourvès, JM : Approximate Maximin Share Allocations in
Matroids. CIAC 2017.
+ journal version in TCS, 2019.



Resource allocation and fairness

I agents N = {1, . . . , n}
I indivisible goods O = {o1, . . . , om}
I normalized additive utilities : ui (oj) ∈ R+ with

∑
j ui (oj) = 1

I for A ⊆ O, ui (A) =
∑

oj∈A ui (oj)

I allocation π : N → 2O with π(i) ∩ π(j) = ∅ for i 6= j

I maxmin allocation : π maximizing mini ui (π(i))

If α = maxi maxj ui (oj) is the maximal valuation assigned by an agnt to a
single good then what is a lower bound Wn(α) on mini ui (π(i)) ?

I Wn(1) = 0

I Wn(1/n) = 1/n

I inbetween ?

(Gourvès, Monnot and Tlinane 2013/2015) :

I improve previously known bounds

I polynomial algorithm giving each agent i at least Wn(αi )

I generalization beyond resource allocation, to matroid-based domains



Resource allocation and fairness
I for each individual i , the maximin fair share value of i is the value

she gives to the worst share of the best possible partition

MaxMinFS(i) := max
π

min
j

ui (π(j))

a b c d
Ann 10 5 7 0
Bob 9 6 7 2

I MaxMinFS(Ann) = 10
I MaxMinFS(Bob) = 11

a b c d
Ann 10 5 7 0
Bob 9 6 7 2

I π satisfies the maxmin fair share property if each individual obtains
at least her maxmin fair share value.

I computing the maximin fair share if an agent is hard
I (Gourvès and Monnot, 2017/19) : polynomial approximations +

generalization to matroids



Resource allocation and fairness

I (Escoffier, Gourvès and Monnot, 2013) : maxmin collective
combinatorial optimisation problems, especially spanning trees for
collective network design.

I (Ferraioli, Gourvès and Monnot, 2014) : finding a maxmin allocation
under the condition that each agent receives the same number of
goods (regularity).

I (Aziz, Biró, Lang, Lesca, Monnot, 2016/19) : Pareto-efficient
reallocation under additive/responsive preferences

I finding an arbitrary Pareto-optimal allocation is easy but checking
whether an allocation is Pareto-optimal can be hard

I equivalent to checking that the allocated objects cannot be
reallocated in such a way that one agent prefers her new allocation
to the old one and no agent prefers the old one to tne new one.

I additive utilities : hardness results and polynomial-time algorithms
under different restrictions

I responsive preferences : characterizations + polynomial algorithm



Multiwinner voting and proportional representation

I Ioannis Caragiannis, Laurent Gourvès, JM : Achieving Proportional
Representation in Conference Programs. IJCAI 2016.

I Dimitris Fotakis, Laurent Gourvès, JM : Conference Program Design
with Single-Peaked and Single-Crossing Preferences. WINE 2016.

I Haris Aziz, Jérôme Lang, JM : Computing Pareto Optimal
Committees. IJCAI 2016 : 60-66

I Jérôme Lang, JM, Arkadii Slinko, William S. Zwicker : Beyond
Electing and Ranking : Collective Dominating Chains, Dominating
Subsets and Dichotomies. AAMAS 2017.

I Haris Aziz, JM : Computing and testing Pareto optimal committees.
Auton. Agents Multi Agent Syst. (2020)



Proportional Conference Program Design

Input :

I N = {1, . . . , n} agents (participants)

I X = {x1, . . . , xm} items (papers)

I k ∈ N∗ (number of slots)

I q ∈ N∗ (number of rooms) such that m ≥ kq

I ui : X → R+ utility function of agent i

Output :

I S collection of k disjoint subsets S1, . . . ,Sk of X with |Sj | = q for
all j

I utility of agent i for program S : ui (S) =
∑k

j=1 maxx∈Sj ui (x)

I find a solution maximizing social welfare : find S1, . . . ,Sk maximizing(
n∑

i=1

ui (S) =

)
n∑

i=1

k∑
j=1

max
x∈Sj

ui (x)



Proportional Conference Program Design
Input :

I N = {1, . . . , n}, X = {x1, . . . , xm}
I k ∈ N∗, q ∈ N∗, m ≥ kq

I ui : X → R+

Output : S collection of k disjoint subsets S1, . . . ,Sk of X with |Sj | = q

for all j , maximizing
∑n

i=1

∑k
j=1 maxx∈Sj ui (x)

i ui (a) ui (b) ui (c) ui (d) ui (e) ui (f ) ui (g)
1 4 3 5 1 2 0 4
2 1 4 3 9 6 2 1
3 6 1 2 0 0 4 6

S1 = {a, d},S2 = {b, f },S3 = {c , g} :

i ui (S1) ui (S2) ui (S3)
1 4 3 5
2 9 4 3
3 5 3 6

7→
3∑

i=1

ui (S) = 42



Proportional Conference Program Design

Input :

I N = {1, . . . , n} agents (participants)

I X = {x1, . . . , xm} items (papers)

I k ∈ N∗ (number of slots)

I q ∈ N∗ (number of rooms) such that m ≥ kq

I ui : X → R+ utility function of agent i

Output : S collection of k disjoint subsets S1, . . . ,Sk of X with |Sj | = q

for all j , maximizing
∑n

i=1

∑k
j=1 maxx∈Sj ui (x)

Particular case : k = 1

I output : S with |S | = q maximizing
∑n

i=1 maxx∈S ui (x)

I Chamberlin-Courant multiwinner voting rule



Proportional Conference Program Design

Input :

I N = {1, . . . , n}, X = {x1, . . . , xm}
I k ∈ N∗, q ∈ N∗, m ≥ kq

I ui : X → R+

I NP-hardness already known for k = 1

I NP-hard also for k = 2, m = 2q and dichotomous utilities
(Caragiannis, Gourvès, Monnot 16)

I approximation algorithms (Caragiannis, Gourvès, Monnot 16)

I conference program design under single-peaked or single-crossing
preferences : tractability + strategyproof mechanisms (Fotakis,
Gourvès, Monnot 16)



Computing Pareto Optimal Committees

I N = {1, . . . , n} voters

I X = {x1, . . . , xm} candidates

I each voter expresses a weak order %i over X : P = (%1, . . . ,%n).

I Sk(X ) = {S ⊂ X : |S | = k}
I preference extension : �E

i extension of %i over Sk(X ) (with %E
i =%i

for k = 1)

I Examples : let A,B ∈ Sk(X ) ;
I responsive extension : A %R B if there is an bijection f : X → X

such that for all x ∈ A, x % f (x)
I leximax extension : A %leximax B if the best element in A is preferred

to the best element in B, or if they are equally good but the second
best element in A is preferred to the second best element in B, etc.

I two other extensions

I for each of these preference extensions, characterise and compute
Pareto-optimal committees in Sk(X )



Collective Dominating Chains, Dominating Subsets and
Dichotomies

I Traditional voting setting : find one alternative (or a set of tied
alternatives) based on the voters’ preferences.

I Less traditional settings :

1. electing a committee of k persons (multiwinner election)
2. finding a ranked list of k candidates for an election based on party

lists, or a ranked shortlist of k names ;
3. finding an optimal way of partitioning students between two or more

groups with homogeneous level of ability in each group given their
results on several tests.

4. more complex settings : k may not be fixed, the size of the partitions
may be constrained etc.

I Define aggregation functions where the output can have any desired
structure.

I Focus on some particular structures : dominating chains, dominating
subsets, dichotomies.



Collective Dominating Chains, Dominating Subsets and
Dichotomies

a plain dominating 2-chain an extended dominating 2-chain

x1

x2

x3 x4 x5

x1

x2

x3 x4 x5

a plain dominating 2-subset an extended dominating 2-subset

x1 x2

x3 x4 x5

x1 x2

x3 x4 x5

A plain/extended dichotomy is a plain/extended dominating k-subset for
some k ∈ {1, . . . ,m − 1}.


